

Data Sheet / Datenblatt NPG-150N, NPG-150NB

Features

UL-Designation NPG-150N, NPG-150NB, UL/ANSI FR-4.1/128

Lead-Free compatible, Tg 150 °C (DSC)

Halogen free resin system with high thermal stability and very low z-Axis expansion

Suitable for multiple press cycles, HDI construction

Superior resistance against CAF, ultra low residual chlorine content enables Al-wire bonding

Notice

All data shown above are determined according analytical methods considered to be reliable and believed to be accurate, but are for information purpose only.

If a delivery specification is agreed between user and supplier, descriptions in the delivery specification take precedence.

Specifications and appearances may change without prior notice for product improvement.

Besonderheiten

UL-Bezeichnung NPG-150N, NPG-150NB, UL/ANSI FR-4.1/128

Für bleifreie Lötprozesse geeignet, Tg 150°C (DSC)

Halogenfreies Harzsystem mit hoher thermischer Stabilität und sehr geringer z-Achsenausdehnung

Für Mehrfachverpressungen, HDI-Aufbauten, geeignet

Überragende CAF-Resistenz, extrem geringer Restchlorgehalt ermöglicht Al-Drahtbonden

Hinweis

Alle im Datenblatt aufgeführten Werte sind nach Messverfahren ermittelt worden, die als verlässlich gelten und die als sachlich richtig anzusehen sind, dennoch dienen sie nur zu Informationszwecken.

Falls eine Lieferspezifikation zwischen Kunde und Lieferant vereinbart wurde, haben die darin genannten Werte Vorrang.

Materialspezifikationen und -erscheinungsbild können zum Zweck einer Produktverbesserung ohne Vorankündigung geändert werden.

Performance List / Leistungsspektrum 1/2

Revision Date: July 2021 SPECIFICATION SHEET

NPG-150N, NPG-150NB

SPECIFICATION SHEET #:

IPC-4101/128 1: Woven E-glass

2: NONE

REINFORCEMENT: RESIN SYSTEM:

Primary: Epoxy

Secondary 1: Multifunctional epoxy

Secondary 2: Modified Epoxy or Non-Epoxy (max. wt. 5%)

FLAME RETARDANT MECHANISM: FILLERS: ID REFERENCE: GLASS TRANSITION (Tg):

Phosphorus, Nitrogen and/or inorganic compound* Contains inorganic fillers UL/ANSI: FR-4.1/128

Minimum UL94 Requirement: V-0

150 °C minimum

MIL-S-13949: NONE *900 ppm max. Br or CL and 1500 ppm max. Br + Cl

LAMINATE REQUIR	EMENTS AN	FORDERUNC	SEN AN DAS	LAMINAT			
	Specification			n ≥ 0,50 mm		Test Method (IPC-	- /
Laminate Requirement		97 in]		97 in]	Units	TM-650)	Ref. Para.
1. Peel Strength, minimum Kupferhaftfestigkeit	Specification	Property	Specification	Property		· ·	3.9.1.1
A. Low profile copper foil and very low profile copper foil - all copper foil >17µm [0,669 mil] B. Standard profile copper foil	0,70 [4,00]	0,78 [4,50]	0,70 [4,00]	0,88 [5,00]		2.4.8	3.9.1.1
1. After thermal stress (35 μm) 2. At 125 ℃ [257 °F] 3. After process solutions C. All other foil - composite	0,80 [4,57] 0,70 [4,00] 0,55 [3,14] AABUS	0,88 [5,00] 0,78 [4,50] 0,70 [4,00] -	1,05 [6,00] 0,70 [4,00] 0,80 [4,57] AABUS	1,23 [7,00] 0,88 [5,00] 0,88 [5,00] -	N/mm [lb/in]	2.4.8.2 2.4.8.3	3.9.1.1.1 3.9.1.1.2 3.9.1.1.3
2. Volume Resistivity, minimum Durchgangswiderstand A. C-96/35/90 B. After moisture resistance	10 ⁶	5,0*10 ⁹	- 10 ⁴	5,0*10 ⁹	MΩcm	2.5.17.1	3.11.1.3
C. At elevated temperature E-24/125	10 ³	10 ⁹	10 ³	10 ⁹			
3. Surface Resistivity, minimum Oberflächenwiderstand A. C-96/35/90 B. After moisture resistance	10 ⁴	5,0*10 ⁷	- 10 ⁴	5,0*10 ⁷ 10 ⁷	МΩ	2.5.17.1	3.11.1.4
C. At elevated temperature E-24/125	10 ³	10 ⁷	10 ³	10 ⁷			
4. Moisture Absorption, maximum Feuchteaufnahme	-	0,30	0,80	0,10	%	2.6.2.1	3.12.1.1
5. Dielectric Breakdown, minimum Dielektrischer Durchschlag	-	60	40	60	kV	2.5.6	3.11.1.6
6. Permittivity at 1 MHz, maximum Dielektrizitätskonstante (Laminate & laminated prepreg)	5,4	4,4	5,4	4,4	-	2.5.5.2 2.5.5.3 2.5.5.9	3.11.1.1 3.11.2.1
7. Loss Tangent at 1 MHz, maximum Verlustfaktor (Laminate & laminated prepreg)	0,035	0,011	0,035	0,011	-	2.5.5.2 2.5.5.3 2.5.5.9	3.11.1.2 3.11.2.2
8. Flexural Strength, minimum Biegefestigkeit A. Length direction Kettrichtung B. Cross direction Schussrichtung	-	- -	415 [60190] 345 [50040]	450 [65267] 390 [56565]	N/mm² [lb/in²]	2.4.4	3.9.1.3
Flexural Strength at Elevated Temperature length direction, minimum	-	-	-	-	N/mm² [lb/in²]	2.4.4.1	3.9.1.4
10. Arc Resistance, minimum Lichtbogenbeständigkeit	60	120	60	120	s	2.5.1	3.11.1.5
11. Thermal Stress 10 s at 288 °C Thermische Belastung [550,4 F], minimum A. Unetched ungeätzt B. Etched abgeätzt	Pass Visual Pass Visual	30 x 10 s 30 x 10 s	Pass Visual Pass Visual	30 x 10 s 30 x 10 s	rating	2.4.13.1	3.10.1.2
12. Electric Strength, minimum Spannungsfestigkeit (Laminate & laminated prepreg)	30	40	-	- -	kV/mm	2.5.6.2	3.11.1.7 3.11.2.3
13. Flammability, minimum Entflammbarkeit (Laminate & laminated prepreg)	V-0	V-0	V-0	V-0	rating	UL94	3.10.2.1 3.10.1.1
14. Glass Transition Temperature, Glasübergangstemperatur minimum TMA DMA DSC	-	140 160 150	150	140 160 150	°C	2.4.24 2.4.24.4 2.4.25	3.10.1.6
15. Decomposition Temperature, Zersetzungstemperatur minimum	325	350	325	350	℃	2.4.24.6 (5% wt loss)	3.10.1.8
16. Z-Axis CTE Therm. Ausdehnungskoeffizient z-Achse A. Alpha 1, maximum prior Tg vor Tg B. Alpha 2, maximum above Tg über Tg C. 50 to 260 °C, maximum (Total Expansion)	-	50 230 3,2	60 300 3,5	50 230 3,2	ppm/°C ppm/°C %	2.4.24	3.9.1.7
T. Time to Delamination Zeit bis zur Delamination (TMA) (Copper removed) A. T260, minimum B. T288, minimum C. T300, minimum	- - -	60 20 5	30 5 AABUS	60 20 5	Minutes	2.4.24.1	3.10.1.9
18. Halogen Content, maximum Halogengehalt -Chlorine -Bromine -Chlorine+Bromine	900 900 1500	600 100 700	900 900 1500	600 100 700	ррт	2.3.41	3.12.1.4
19. CAF Resistance CAF-Beständigkeit	-	Pass	AABUS	Pass	Pass/Fail	2.6.25	3.12.1.5

AABUS = As Agreed Between User and Supplier

Wie zwischen Kunde und Lieferant vereinbart

Performance List / Leistungsspektrum 2/2

Revision Date: July 2021 SPECIFICATION SHEET

NPG-150N, NPG-150NB

SPECIFICATION SHEET #: REINFORCEMENT:

IPC-4101/128 1: Woven E-alass

2. NONE

RESIN SYSTEM:

Primary: Epoxy Secondary 1: Multifunctional epoxy

FLAME RETARDANT MECHANISM:

Phosphorus, Nitrogen and/or inorganic compound* 150 °C minimum

Secondary 2: Modified Epoxy or Non-Epoxy (max. wt. 5%) Minimum UL94 Requirement: V-0

ID REFERENCE: GLASS TRANSITION (Tg):

Contains inorganic fillers UL/ANSI: FR-4.1/128

MIL-S-13949: NONE

*900 ppm max. Br or CL and 1500 ppm max. Br + Cl

	LAMINATE REQUIR	EMENTS / A	NFORDERUI	NGEN AN DA	AS LAMINA	Τ		
Lamina	ate Requirement	Specification [0,01:		Specification [0,01:		Units	Test Method (IPC- TM-650)	Ref. Para.
	•	Specification	Property	Specification	Property		1101 030)	
20. Other	weitere		-	-	-			
Permittivity at 1 GHz C-24/23			4,44	-	4,45	-	2.5.5.9	3.11.1.1
Loss Tangent at 1 GHz C-24/	'23/50 Verlustfaktor	-	0,013	-	0,013	-	2.5.5.9	3.11.1.2
Dimensional stability X/Y-ax	is E-0,5/170(R)/E-4/105(TL)	< 0,05	0,01-0,03	< 0,05	0,005-0,03	%	2.4.39	3.9.1.2
X/Y-Axis CTE	prior Tg vor Tg above Tg über Tg		9-13	-	9-13	ppm/°C	2.4.24	3.9.1.6
Thermal Conductivity λ	Thermische Leitfähigkeit λ	-	0,42 0,37	-	0,42 0,37	W/mK	ASTM-E-1461 ASTM-D-5470	3.9.1.5
Young's Modulus	E-Modul							
A. Length direction	Kettrichtung	-	-	-	23-25	GPa	-	-
B. Cross direction	Schussrichtung	-	-	-	22-24			
Specific Heat at 25 ℃	Spezifische Wärmekapazität bei 25°C	-	0,946	-	0,946	I/g°C	-	-
Caloric Value	Bruttoverbrennungswärme	-	8,989	-	8,989	MJ/kg	ISO 1716	-
Density (50 % resin content)	Dichte 50 % Harzgehalt	-	2,00	-	2,00	g/cm³	-	-
Pressure Cooker Test - 2 hou	rs (10 s solder dip at 288 ℃)	Pass Visual	Pass Visual	Pass Visual	Pass Visual	rating	-	-
RoHS 3 compliance (10 subs	stances)	< limits	yes	< limits	yes	correspond to	(EU) 2015/863	-
REACH compliance (at the ti	me of revision date) zum Ausgabestand	no SVHCs	yes	no SVHCs	yes	rating	(EC) No 1907/2006	-
Conflict Minerals 3TG		conflict-free	no use	conflict-free	no use	rating	CFSI	-
DIN EN 45545-2		-	HL3	-	HL3	LOI %	R24	-
Applicable Specification She	eets # anwendbare Spezifikationen	-	127	-	127	correspond to	-	-
Comparative Tracking Index	(CTI) Kriechstromfestigkeit	-	2 / 250/399	-	2 / 250/399	PLC / V	ASTM-D-3638	-

PREPREG REQUIREMENTS / ANFORDERUNGEN AN DAS PREPREG											
Prepreg Requirem	ent	Specification	Property	Unit	Test Method	Ref. Para.					
1. Shelf Life, minimum (Condition 1 / Condition 2)	Lagerfähigkeit	180/90	180/90	Days	AABUS	3.17					
2. Reinforcement	Verstärkung	As per IPC-4412 or AABUS									
3. Volatile content maximum	Flüchtiger Anteil	1,5	1,5	%	2.3.19	3.9.2.2.8					
4. Prepreg Parameters	Prepreg-Kenngrößen	-	See page 4	AABUS	AABUS	1.1.7					
5. Flammability, minimum (as laminated)	Entflammbarkeit	V-0	V-0	rating	UL94	3.10.2.1					
6. Other	weitere	-	-								

AABUS = As Agreed Between User and Supplier

Wie zwischen Kunde und Lieferant abgestimmt

Performance List 1. to 19. follows IPC-4101 template for specification sheets and shows minimum or maximum properties expectable. This overview covers all laminate thicknesses and claddings, therefore actual values are typically better.

Das Leistungsspektrum 1. bis 19. orientiert sich an der IPC-4101-Vorlage für Spezifikationsblätter und zeigt zu erwartende Minimal- oder Maximal-Eigenschaften. Diese Übersicht soll alle Laminatdicken und kaschierungen erfassen, tatsächlichen Werte sind daher typischerweise besser.

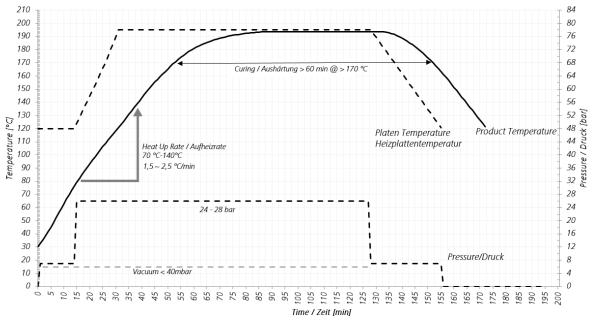
Layer Construction / Lagenaufbau

Nominal Thickness exclude Copper Cladding Dickenangabe ohne Kupferkaschierung NPG-150N												
[mm]	[mil]	Notation Bezeichnung	Const. Auj	ructi bau	on	Tolerance [mm] IPC-Class						
0,04	1,6	0,04	1037	Х	1	± 0,013 Class C						
0,05	2	0,05	106	Х	1	± 0,013 Class C						
0,06	2,5	0,06	1080	Х	1	± 0,013 Class C						
0,08	3	0,08	2112	Х	1	± 0,013 Class C						
0,09	3,5	0,09	2112	Х	1	± 0,013 Class C						
0,10	4	0,10	1080	Х	2	± 0,013 Class C						
0,10	4	0,11	2116	Х	1	± 0,013						
0,13	5	0,13	1080	Х	2	Class C ± 0,018						
0,13	5	0,13SP	2116	Х	1	Class C ± 0,018						
0,14	5,5	0,14	1506	Х	1	Class C ± 0,018						
0,15	6	0,15	1506	Х	1	Class C ± 0,018						
0,16	6	0,16	2112	X	2	Class C ± 0,018						
0,18	7	0,18	1506	X	1	Class C ± 0,025						
0,18	7	0,18SP	7627	X	1	Class C ± 0,025						
·	8	0,7831	2116		2	Class C ± 0,025						
0,20				X		Class C ± 0,025						
0,20	8	0,21	7628	X	1	Class C ± 0,025						
0,23	9	0,23	2116	Χ	2	Class C ± 0,025						
0,25	10	0,26	2116	Х	2	± 0,023 Class C ± 0,038						
0,30	12	0,30	2116	Χ	3	Class C						
0,30	12	0,30SP	1506	Χ	2	± 0,038 Class C						
0,35	14	0,35	7628	Х	2	± 0,038 Class C						
0,38	15	0,38	7628	Χ	2	± 0,038 Class C						
0,40	16	0,40	7628	Х	2	± 0,038 Class C						
0,45	18	0,46	7667	Χ	2	± 0,038 Class C						
0,50	20	0,50	7628	Χ	3	± 0,050 Class C						
0,53	21	0,53	7628	Χ	3	± 0,050 Class C						
0,55	22	0,55	7628	Χ	3	± 0,050 Class C						
0,60	24	0,60	7628	Χ	3	± 0,050 Class C						
0,64	25	0,64	7667	Х	3	± 0,050 Class C						
0,71	28	0,71	7628	Х	4	± 0,050 Class C						
0,74	29	0,74	7628	Х	4	± 0,050 Class C						
0,80	31,5	0,80	7628	Χ	4	± 0,075 Class C						

Dickenangabe inklusive Kupferkaschierung NPG-150N												
	ī	NPG- Notation	Const	ructi	on	Tolerance [mm]						
[mm]	[mil]	Bezeichnung		rucu fbau		IPC-Class						
		0,90 H/H	7628	X	5	± 0,075						
0,90	36	0,90 1/1	7628	X	5	± 0,073 Class M						
		1,00 H/H	7628	X	5	Class IVI						
		1,00 1/1	7628	X	5	± 0,075						
1,00	39	1,00 1/1	7628	X	5	Class M						
		1,00 3/3	7628	X	4	Class IVI						
		1.10 H/H	7628	X	6	± 0,075						
1,10	43	1,10 1/1	7628	X	6	Class M						
		1,20 H/H	7628	X	6	0,035 177						
		1,20 1/1	7628	X	6	± 0,075						
1,20	47	1,20 2/2	7628	X	6	Class M						
		1,20 3/3	7628	Х	5							
		1,30 H/H	7628	Χ	7	0.130						
1,30	51	1,30 1/1	7628	Χ	7	± 0,130						
,		1,30 2/2	7628	Χ	6	Class L						
		1,40 H/H	7628	Χ	7							
1,40		1,40 1/1	7628	Χ	7	± 0,130						
	55	1,40 2/2	7628	Χ	7	Class L						
		1,40 3/3	7628	Χ	6							
		1,50 H/H	7628	Χ	8							
1,50	59	1,50 1/1	7628	Χ	8	± 0,130						
1,50		1,50 2/2	7628	Χ	7	Class L						
		1,50 3/3	7628	Χ	7							
		1,55 H/H	7628	Χ	8							
1,55	61	1,55 1/1	7628	Χ	8	± 0,075						
1,55	07	1,55 2/2	7628	Χ	8	Class M						
		1,55 3/3	7628	Χ	7							
		1,60 H/H	7628	Χ	8							
1,60	62	1,60 1/1	7628	Χ	8	± 0,130						
,,,,,		1,60 2/2	7628	Χ	8	Class L						
		1,60 3/3	7628	Χ	7							
		2,00 H/H	7628	Χ	10							
2,00	76	2,00 1/1	7628	Χ	10	± 0,180						
-/		2,00 2/2	7628	Χ	10	Class L						
		2,00 3/3	7628	Χ	10							
		2,40 H/H	7628	Χ	13							
2,40	92	2,40 1/1	7628	Χ	13	± 0,180						
, .		2,40 2/2	7628	Χ	13	Class L						
		2,40 3/3	7628	Χ	12							
		3,20 H/H	7628	Χ	17							
3,20	122	3,20 1/1	7628	Χ	17	± 0,230						
3,20		3,20 2/2	7628	Χ	17	Class L						

H/H = copper foil 18 µm / 18 µm 1/1 = copper foil 35 µm / 35 µm 2/2 = copper foil 70 µm / 70 µm

 $3/3 = copper foil 105 \ \mu m / 105 \ \mu m$


SP = simplistic, cheaper layer construction

SP = einfachere, kostengünstigere Aufbauvariante

Thicknesses are typically stockpiled for specific projects only Diese Dicken werden nur auf Anfrage bevorratet

Press Cycle Recommendation / Verpressempfehlung

Product temperature and heat up rate depending on used cushion pads, number of PCBs and iron carriers! Produkttemperatur und Aufheizrate sind abhängig von Presspolstern, Pressenbelegung und Presswerkzeugen!

Theoretical Thickness of Prepreg / Theroretische Prepregdicke

Prepreg Type	RC % ± 3%	RF % ± 5%	GT s ± 20 s	Copper Therore	neoretical Thickness of Prepreg Ply after Lamination, Copper Cladding 30 μm after Pretreatment, Residual Copper % vs Opper Foil (HDI Construction) Deroretische Prepregdicke nach dem Verpressen, Kupferkaschierung 30 μm nach Vorbehandlung, Restkupfer % gegen Upferfolie (HDI-Aufbau)														
				100%	95%	90%	85%	80%	75%	70%	65%	60%	55%	50%	45%	40%	35%	30%	25%
106	68%	35%		46,3	44,8	43,3	41,8	40,3	38,8	37,3	35,8	34,3	32,8	31,3	29,8	28,3	26,8	25,3	23,8
106MR	72%	42%		54,0	52,5	51,0	49,5	48,0	46,5	45,0	43,5	42,0	40,5	39,0	37,5	36,0	34,5	33,0	31,5
106HR	74%	45%		58,7	57,2	55,7	54,2	52,7	51,2	49,7	48,2	46,7	45,2	43,7	42,2	40,7	39,2	37,7	36,2
1080	62%	35%		75,5	74,0	72,5	71,0	69,5	68,0	66,5	65,0	63,5	62,0	60,5	59,0	57,5	56,0	54,5	53,0
1080MR	65%	40%		83,3	81,8	80,3	78,8	77,3	75,8	74,3	72,8	71,3	69,8	68,3	66,8	65,3	63,8	62,3	60,8
1080HR	68%	44%		92,6	91,1	89,6	88,1	86,6	85,1	83,6	82,1	80,6	79,1	77,6	76,1	74,6	73,1	71,6	70,1
2113	56%	35%		102,6	101,1	99,6	98,1	96,6	95,1	93,6	92,1	90,6	89,1	87,6	86,1	84,6	83,1	81,6	80,1
2116	50%	25%	160	115,2	113,7	112,2	110,8	109,3	107,8	106,4	104,9	103,4	102,0	100,5	99,0	97,5	96,1	94,6	93,1
2116MR	54%	30%	100	128,1	126,6	125,1	123,7	122,2	120,7	119,2	117,8	116,3	114,8	113,4	111,9	110,4	109,0	107,5	106,0
2116HR	58%	38%		143,4	141,9	140,5	139,0	137,5	136,0	134,6	133,1	131,6	130,2	128,7	127,2	125,8	124,3	122,8	121,3
1506	48%	23%		163,8	162,3	160,9	159,5	158,1	156,6	155,2	153,8	152,4	150,9	149,5	148,1	146,7	145,2	143,8	142,4
1506MR	52%	30%		181,5	180,1	178,7	177,2	175,8	174,4	173,0	171,5	170,1	168,7	167,3	165,8	164,4	163,0	161,6	160,1
7628	43%	17%]	186,3	184,9	183,4	182,0	180,6	179,2	177,7	176,3	174,9	173,5	172,0	170,6	169,2	167,8	166,3	164,9
7628TR	45%	20%		195,4	193,9	192,5	191,1	189,7	188,2	186,8	185,4	184,0	182,5	181,1	179,7	178,3	176,8	175,4	174,0
7628MR	47%	22%	1	205,1	203,7	202,3	200,8	199,4	198,0	196,6	195,1	193,7	192,3	190,9	189,4	188,0	186,6	185,2	183,7
7628HR	50%	27%	1	221,2	219,8	218,3	216,9	215,5	214,1	212,6	211,2	209,8	208,4	206,9	205,5	204,1	202,7	201,2	199,8

Storage Condition: Prepreg Shelf Life according IPC-4101 3.17, after withdrawal from cold store acclimatise in sealed bag until bedewing is certainly excluded, avoid UV-rays and strong light. Unpacked prepreg might absorb moisture, this weakened the bond strength.

Lagerbedingungen: Prepreg-Verarbeitbarkeit gemäß IPC-4101 3.17, nach Entnahme aus dem Kühllager Akklimatisierung in geschlossener Verpackung bis eine Betauung sicher ausgeschlossen werden kann. UV-Strahlung und starke Lichtquellen sind zu vermeiden. Unverpacktes Prepreg kann Feuchte aufnehmen, das reduziert das Haftvermögen.

Thickness indication is applicable for recommended press cycle. Due to the impracticability to factor in all press cycle influencing effects and the fact that the calculation follows a simplistic approach shown data are for reference only.

Dickenangaben gelten für den empfohlenen Pressprozess. Da nicht alle die Verpressung beeinflussenden Faktoren berücksichtigt werden können und die Berechnung einem vereinfachten Ansatz folgt dienen die gezeigten Werte nur als Information.

Permittivity and Loss Tangent / Dielektrizitätskonstante und Verlustfaktor

Nominal 1	hickness	Construction	Resin	Dk	Dk	Dk	Dk	Dk	Df	Df	Df	Df	Df
[mm]	[mil]	Aufbau	Content	1 GHz	3 GHz	5 GHz	7 GHz	10 GHz	1 GHz	3 GHz	5 GHz	7 GHz	10 GHz
0,05	2	106*1	69,0%	3,90	3,87	3,84	3,83	3,83	0,013	0,013	0,014	0,014	0,015
0,06	2,5	1080*1	54,5%	4,11	4,07	4,06	4,03	4,03	0,012	0,012	0,013	0,013	0,014
0,10 ¹⁾	4	2116*1	45,5%	4,37	4,35	4,33	4,29	4,29	0,011	0,011	0,012	0,012	0,013
0,13SP	5	2116*1	52,5%	4,09	4,08	4,07	4,05	4,05	0,012	0,012	0,013	0,013	0,014
0,15	6	1506*1	43,5%	4,40	4,38	4,35	4,32	4,30	0,011	0,011	0,012	0,012	0,013
0,20 ²⁾	8	7628*1	45,5%	4,39	4,35	4,33	4,29	4,29	0,011	0,011	0,012	0,012	0,013
0,25 ³⁾	10	2116*2	53,0%	4,11	4,04	4,04	4,00	4,00	0,012	0,012	0,013	0,013	0,014
0,30SP	12	1506*2	44,0%	4,44	4,35	4,34	4,32	4,32	0,012	0,011	0,012	0,012	0,013
0,35	14	7628*2	40,0%	4,45	4,34	4,34	4,32	4,32	0,012	0,011	0,012	0,012	0,013
0,40	16	7628*2	43,5%	4,38	4,35	4,33	4,29	4,29	0,012	0,011	0,012	0,012	0,013
0,50	20	7628*3	38,5%	4,50	4,41	4,40	4,39	4,39	0,011	0,010	0,011	0,011	0,012
0,60	24	7628*3	43,5%	4,38	4,35	4,33	4,29	4,29	0,012	0,011	0,012	0,012	0,013
0,71	28	7628*4	40,0%	4,45	4,34	4,34	4,32	4,32	0,012	0,011	0,012	0,012	0,013
0,90	36	7628*5	39,5% ⁴⁾	4,46	4,34	4,35	4,33	4,33	0,012	0,010	0,011	0,011	0,012
1,00	39	7628*5	42,5% ⁴⁾	4,39	4,38	4,37	4,33	4,32	0,012	0,011	0,012	0,012	0,013
1,20	47	7628*6	41,0% ⁴⁾	4,46	4,44	4,43	4,41	4,37	0,012	0,011	0,012	0,012	0,013
1,55	61	7628*8	42,5% ⁴⁾	4,41	4,39	4,38	4,41	4,38	0,012	0,011	0,011	0,011	0,011

Prepreg	Prepre	g Thickness	Resin	Dk	Dk	Dk	Dk	Dk	Df	Df	Df	Df	Df
Туре	[mm]	[mil]	Content	1 GHz	3 GHz	5 GHz	7 GHz	10 GHz	1 GHz	3 GHz	5 GHz	7 GHz	10 GHz
106	0,05	2,0	68%	3,86	3,84	3,82	3,80	3,79	0,013	0,013	0,014	0,014	0,015
106MR	0,05	2,1	72%	3,79	3,78	3,75	3,74	3,73	0,014	0,014	0,015	0,015	0,016
106HR	0,06	2,4	74%	3,76	3,75	3,72	3,70	3,69	0,014	0,014	0,015	0,015	0,016
1080	0,07	2,8	62%	3,97	3,94	3,92	3,90	3,89	0,013	0,013	0,014	0,014	0,015
1080MR	0,08	3,1	65%	3,92	3,89	3,87	3,85	3,84	0,013	0,013	0,014	0,014	0,015
1080HR	0,09	3,5	68%	3,86	3,84	3,82	3,80	3,79	0,013	0,013	0,014	0,014	0,015
2113	0,10	3,9	56%	4,07	4,03	4,02	3,99	3,98	0,012	0,012	0,013	0,013	0,014
2116	0,11	4,3	50%	4,18	4,13	4,11	4,09	4,08	0,011	0,011	0,012	0,012	0,013
2116MR	0,12	4,7	54%	4,11	4,06	4,05	4,02	4,01	0,012	0,012	0,013	0,013	0,014
2116HR	0,14	5,5	58%	4,04	4,00	3,98	3,96	3,95	0,012	0,012	0,013	0,013	0,014
1506	0,16	6,3	48%	4,21	4,16	4,15	4,12	4,11	0,011	0,011	0,012	0,012	0,013
1506MR	0,17	6,7	52%	4,19	4,17	4,14	4,12	4,10	0,011	0,011	0,012	0,012	0,013
7628	0,18	7,1	43%	4,30	4,24	4,23	4,20	4,19	0,011	0,011	0,012	0,012	0,013
7628TR	0,19	7,5	45%	4,28	4,27	4,26	4,25	4,25	0,011	0,011	0,012	0,012	0,013
7628MR	0,20	7,9	47%	4,23	4,17	4,16	4,14	4,13	0,011	0,011	0,012	0,012	0,013
7628HR	0,22	8,7	50%	4,18	4,13	4,11	4,09	4,08	0,011	0,011	0,012	0,012	0,013

Test method: IPC-TM-650-2.5.5.13 Relative Permittivity and Loss Tangent Using a Split-Cylinder Resonator Laminate's notation conforms to the used glass fabric: ¹⁾ 0,11, ²⁾ 0,21, ³⁾ 0,26, ⁴⁾ RC% for H/H cladding Die Materialbezeichnug richtet sich nach dem verwendeten Glasgewebe: ¹⁾ 0,11, ²⁾ 0,21, ³⁾ 0,26, ⁴⁾ Harzgehalt für 18 μm Kupferkaschierung

Contact / Kontakt

Technolam GmbH Luxemburger Str. 9 53842 Troisdorf Germany fon. +49 (0) 2241 - 8737-0 fax. +49 (0) 2241 - 806633 mail. welcome@technolam.de web. www.technolam.de

EINFACH KANN JEDER. WIR SIND DIE SPEZIALISTEN FÜR KOMPLEXE LEITERPLATTEN.

IHR SPEZIALIST FÜR: Prototypen | Kleinserien & Muster | Express-Service | individuelle Fertigung | hohe Flexibilität | 100% Made in Germany

www.becker-mueller.de

Ein Name. Ein Anspruch.

Becker & Müller ist der kompetente Partner rund um Ihre Leiterplatte. Höchste Qualität, Schnelligkeit und Zuverlässigkeit zählen dabei zu den wichtigsten Faktoren.

→ High Quality

100% made in Germany! Ausschließliche Eigenfertigung nach strengen Qualitätsrichtlinien.

→ High Speed

Minimale Lieferzeiten im **Express-Service** bei maximaler Liefertreue.

→ High Flexibility

Individuelle Lösungen für spezielle Kundenwünsche.

Unsere Online-Services

Um die Abwicklung Ihrer Leiterplattenbeschaffung – von Entwicklung über Bestellung bis hin zur Lieferung – möglichst einfach und effektiv zu gestalten, bieten wir unseren Kunden eine Reihe von praktischen Online-Services.

Besuchen Sie unsere Website und profitieren Sie von Services wie:

- Online-Kalkulator
- o Bestellformulare
- Abfrage von Fertigungs- und Versandstatus Ihrer Aufträge
- o Berechnungstools für
 - Impedanz
 - Strombelastbarkeit
 - Temperaturerhöhung
 - Leiterbreite
 - Kupferstärke

Gerne steht unser Team Ihnen natürlich auch persönlich beratend zur Verfügung. Kontaktieren Sie uns!

KONTAKT

Becker & Müller Schaltungsdruck GmbH Bildstöckle 11 77790 Steinach i.K.

Telefon: +49 (0)7832 9180-0 Telefax: +49 (0)7832 9180-35 brief@becker-mueller.de

